National Repository of Grey Literature 1 records found  Search took 0.01 seconds. 
ELECTROCHEMICAL CHARACTERISTICS OF ADVANCED MAGNESIUM ALLOYS PROCESSED BY POWDER METALURGY
Minda, Jozef ; Nový, František (referee) ; Stoulil, Jan (referee) ; Hadzima,, Branislav (advisor)
The subject of the present dissertation is basic research in the field of advanced magnesium-based materials with high potential for medical applications prepared by powder metallurgy. These materials are evaluated in terms of corrosion behaviour in corrosive media by chemical composition and set conditions simulating the physiological environment of the human body (Hank's Balanced Salt Solution was used in this work). The aim is to analyze the influence of the processing parameters, chemical composition and structure on electrochemic characteristics of theprepared materials. For this purpose, a deeper of the the corrosion behavior, to obtain electrochemical characteristics and to investigate the degradation properties of the studied materials by means of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), with elemental analysis by energy-dispersive spectroscopy (EDS) and other complementary methods. The materials for the experiments are prepared using powder metallurgy, which allows the formation of composites with compositions that do not match conventional manufacturing technologies. Thus, pure Mg samples were prepared at process parameters with pressing pressures of 100 and 500 MPa at 400 °C and also samples pressed at 500 MPa and room temperature were tested. Furthermore, MgZn composites prepared at a pressing pressure of 500 MPa and a temperature of 300 °C with a Zn content of 1, 5, 10 and 15 wt.% or MgZn composites pressed at a pressure of 500 MPa and a temperature of 400 °C with a Zn content of 1, 5 and 10 wt.%. Composites of the Mg-hydroxyapatite binary system pressed at 500 MPa and 400 °C with hydroxyapatite contents of 10, 20, 30 and 40 wt.% were also studied. The degradation mechanisms of these materials were investigated using the above mentioned methods and the basic electrochemical parameters and their evolution during the time of exposure were determined. From the results, the influence of process parameters, chemical composition and the corrosive environment itself on the studied materials is evaluated. Several materials that appear to be most suitable for the medical application are described and the causes of degradation behaviour at the level of the structure of the materials and their electrochemical interaction with the corrosive environment are also discussed in the dissertation thesis. Compaction and densification positively influenced pure Mg samples, where samples pressed at 500 MPa and 400 °C are further selected as reference material. Increasing Zn content positively electrochemically affects the corrosion resistance of MgZn series of samples pressed at 500 MPa and 300 °C, on the contrary, in the combination of electrochemical - microgalvanic and structural effects, low Zn content is optimal for MgZn composites pressed at 500 MPa and 400 °C. For Mg-hydroxyapatite materials, in agreement with the literature, it was shown that the most stable corrosion product layers with the best corrosion properties and evolution in time are formed for samples with hydroxyapatite content up to 10 wt.%.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.